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We introduce the notion of an "m-bond" and show how it may be used to 
manipulate the cluster expansions that describe the equilibrium properties of 
classical fluids. An m-bond has a constant value of -1 ,  and its presence affects 
the sign and symmetry number of a graph. We further define an "m-product," 
which is formed by summing all graphs obtained by adding m-bonds to join field 
points in the (usual) product graph. It is shown that the logarithm of a sum of 
graphs can be written in terms of their m-products. The formalism is used to 
demonstrate a few well-known results concerning cluster expansions. Also, a 
generalization of the m-product is introduced, and with it a theorem is presented 
that relates graphs composed off-fonds to those that contain both f- and ( f  + 1 )- 
bonds. Such "frustrated" graphs are useful in understanding approximations such 
as the Percus-Yevick formula, and also in performing numerical calculations. 

KEY WORDS: Cluster series; diagrammatic methods; topological reduction; 
graph theory. 

1. INTRODUCTION 

The statist ical  t r ea tmen t  of  fluids has advanced  great ly over  recent  decades,  
and  m u c h  of  this progress  has been  facilitated by  the deve lopmen t  of 
d i a g r a m m a t i c  methods .  " ~ )  These me t h o d s  provide  an  intui t ive ,  visual  
m e a n s  to categorize a n d  m a n i p u l a t e  the m a n y  ( in fact, infini te)  integrals  
tha t  arise when  equ i l ib r ium t h e r m o d y n a m i c  a n d  s t ruc tura l  proper t ies  are 
expressed in terms of  the in t e rmolecu la r  potent ia l .  Presen t  appl ica t ions  
have come  a long  way from the early successful t r ea tments  of  ha rd  spheres 
a n d  models  for ai 'gon. Molecu l a r  fluids, polymers ,  i n h o m o g e n e o u s  fluids, 
electrolytes,  gels, a n d  r a n d o m  me d i a  are b u t  some examples  of the systems 
we have come  to u n d e r s t a n d  bet ter  by  app ly ing  d i ag rammat i c  techniques.  
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Equilibrium properties are given in terms of the intermolecular poten- 
tial by multibody integrals, termed cluster integrals. A cluster integral may 
be represented diagrammatically by a graph, which is a collection of points 
connected by bonds. The relation between the cluster integral and its graph 
is straightforward, but it is not briefly stated. Moreover, there exists a wide 
array of techniques for categorizing graphs by their topology, and for 
reducing their sums to a simpler form. We refer the reader to standard 
references C2-4~ for this background information, which is essential to under- 
standing what follows. 

This report presents a new tool for transforming and reducing cluster 
sums or series. A key element of the treatment is the "m-bond," and with 
it a new multiplication operator, the "m-product." These devices permit us 
to derive a new topological reduction that expresses the sum of many 
graphs in terms of the logarithm of the sum of fewer graphs. This develop- 
ment is presented in the following section, while in Sections 3 and 4 we 
provide a few simple applications. 

2. F O R M A L I S M  

2.1.  D e f i n i t i o n s  

The following definitions apply to connected, simple graphs composed 
of black yk-points, some or no labeled white root points, and B-bonds and 
m-bonds. 

An m-bond connecting two points has a constant value of - 1, regard- 
less of the value of the coordinates represented by the points. The effect of 
an m-bond on the value of a graph is twofold: it affects the sign of the 
graph (i.e., whether it has a positive or negative value), and it affects the 
symmetry number of the graph. Two field points are m-adjacent if they are 
joined directly by an m-bond. An m-bond is not usually joined to a root 
point. Two field points are said to be in the same region if they can be 
joined by a path that does not pass through any white points or traverse 
any m-bonds; i.e.,, points in the same region remain connected upon 
removal of all white points and m-bonds. The following graphs give 
examples of regions, each of which is enclosed in a curve (throughout this 
paper we designate an m-bond by a dotted line): 
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Two distinct regions of a graph are m-connected if there is a path connect- 
ing them (i.e., connecting any point in one to any point in the other) that 
does not go through any white points. A graph in which all regions are 
m-connected remains a connected graph upon removal of all white points. 
Two regions are m-adjacent if any two points from each region are 
m-adjacent. Regions that are m-connected need not be m-adjacent. 

A graph is properly m-connected if no two field points in the same 
region can be connected by a path that traverses an m-bond, without going 
through another region of the graph. Furthermore, all pairs of regions of 
a properly m-connected graph are m-connected. The graphs in the 
examples above are properly m-connected; the following graphs are not: 

The product of two graphs F1 and F2 (denoted F~ �9  is formed by over- 
laying any common white circles. If the two graphs have no common white 
circles (or have no white circles at all), the product is a disconnected graph 
(this is the standard definition of the product). 

The mmproduct of two graphs FI and F 2 (denoted f 1 x C2) is the sum 
of all topologically distinct, properly m-connected graphs that can be 
formed by adding one or more m-bonds to the product f I */- '2 ("adding" 
an m-bond means to join any pair of field points by an m-bond). Note that 
if F~ and /'2 are star-irreducible, each such graph will have exactly two 
regions--composed of the fields points from F~ and Fz respectively--and 
that m-bonds will be added connecting field points from (what was) F~ to 
field points from F2. The m-product of several graphs is defined similarly: 
the sum of all properly m-connected graphs formed by adding one or 
more m-bonds to the product graph. We write F • to represent the p-fold 
m-product F x F x ...  x F (p terms). Further, we write M f=, F, to repre- 
sent the m-product F~ x F2 x ...  x Fp. Examples follow: 

�9 �9 

O x H = H  + i~ 

( o ) X  3 �9 at 
: § V - e  
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1 2 1 2 1 2 1 2 1 2 

( H ) x 2 =  + --. 
+ �9 + - .  + - . . ~  

v r 2 1 2 2 2 

vL 1 2 2 i 4 

v 2 2 4 2 8 

The numbers following the last example will be explained shortly. 

2.2�9 Labeled and Unlabeled Regions and Field Points 

The value of a graph F equals the integral it represents (I) divided by 
its symmetry number (v): 1-'=I/v. If the graph is said to have labeled field 
points, then its field points are distinguishable (but still integrated upon); 
the symmetry number of a graph with labeled field points is unity, and its 
value is jus t / .  

The only effect of labeling the field points is to eliminate the symmetry 
number, and to render distinct what would otherwise be topologically 
equivalent graphs. In particular, the product of graphs with labeled field 
points is formed in the usual manner, by overlapping only the labeled white 
points. Any conflict in the labeling is resolved by relabeling the field points 
of the product graph. The m-product of graphs with labeled field points 
will in general include more terms in the sum used to form the m-product. 
It should be clear that in taking the product of graphs that each consist of 
a single field point, 

(m-product with unlabeled field points) 

1 
= - (m-product with labeled field points) 

P 



Cluster Expansions 881 

where p is the number of field points in the product graphs. The reasoning 
is as follows: Each graph F of the sum has the value l / v ,  and upon labeling 
its points it may potentially give rise to p ! distinct graphs, each of value L 
However, v of these labeled graphs will not be distinct, so instead of giving 
rise to p ! graphs, it will give rise to only p !/v. The sum of these graphs will 
then be p !//v, which is of course p ! times the original graph. 

We will sometimes find it convenient to consider graphs with labeled 
regions, but with field points that are not necessarily labeled. Labeling the 
regions has an effect similar to that of labeling the field points: graphs that 
were previously equivalent become distinct. We define for an unlabeled 
graph a r e g i o n - s y m m e t r y  n u m b e r  VR as the number of ways that the region 
labels may be permuted while leaving the graph topologically unchanged. 
Moreover, we define the symmetry number VL of a region-labeled graph as 
the number of ways that the field points may be labeled and permuted 
while remaining in their respective regions, and while leaving the graph 
topologically unchanged. For a properly m-connected graph, v = v R v L. The 
various symmetry numbers are demonstrated in the last example above. 

2.3. Lemmas 

We derive three lemmas that will assist in the proof of the logarithmic 
reduction to be presented shortly. 

L e m m a  A. Let F be the graph comprising a single unlabeled field 
point. Then the multiple m-product 1 "• has the value 

(_)p-] 
• I p / " u n l a b e l e d  ~"  

P 

Equivalently, if F comprises a single l a b e l e d  field point, then 

xp _ _ ) p - i  i s / - ' l a b e l e d  - -  ( (p -- 1 ) ! 

Before proving the lemma, we will demonstrate with very simple examples. 
All bonds in the graphs below are m-bonds; the number above each graph 
represents its contribution to the m-product (upon division by IS) :  

1 
p = 2 unlabeled: - 1/2 = - -  1 2 

2 �9 . . . . .  �9 

- 1  
labeled: �9 . . . . . .  �9 = - I  2 

1 2 
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p = 3  unlabeled: 

+1/2 - 1 / 6  

. . . .  11~ ." + �9 - -  

e" o e- o -  +5 " 

+1 +1 
e3 e2 

labeled: - ". + + 
�9 o �9 o 

+1 --1 
.o. 1 .~ 

. .  �9 + .' = +213 

e �9 O( . . . . .  "~ 

Proof. The proof is most easily performed for the lemma stated in 
terms of labeled graphs. In this case, all graphs formed in the m-product 
have the same absolute value, namely ,P. What remains is to determine the 
number of connected graphs with a given number of bonds, and to sum 
these with their appropriate signs. Letting Cr. h represent the number of 
connected diagrams having p points and b bonds, we introduce the 
generating function Cp(y) 

Cr(y) = ~. Cp.b y b 
b 

Gilbert ~5~ has presented a general solution for Cp(y), but we need only 
Cp(-1),  which gives us precisely the sum we seek. According to his 
solution, Cp( - 1 ) = ( - )P- ' (p - I )!, and the proof follows directly. 

Lemma A can be stated more generally. 

L e m m a  A (General form). Let [ ' 1 ,  /"2 . . . . .  /"i  . . . .  each be a graph 
that comprises a single unlabeled black yi-point. Then the multiple 
m-product M~=~/~, has the value 

i ~ l  P i = l  

The proof proceeds as before, with trivial modification. 

L e m m a  B. Let R 1 and R 2 be two regions of a graph F that has 
labeled regions, unlabeled field points, some or no labeled white points, 
B-bonds, and some or no m-bonds; RI and R 2 should not be m-adjacent, 
although F may have m-bonds connecting regions elsewhere, or connecting 
R, and/or R E to other regions. Let r, and r 2 be subsets (possibly the entire 
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set) of the field points in R~ and R2, respectively. Let G be the sum of all 
distinct simple graphs obtained from f '  by joining field points in rl to field 
points in r 2 using one or more m-bonds. Then 

a ~  I F  

Proo f  Label all of the n 1, n 2 resp. field points of r~, r 2 and consider 
the sum over all distinct graphs obtained from this labeled graph by 
permuting the new labels within each region and/or adding some or no 
m-bonds joining points in r~ to those in r z. This sum is equal to n,! n2! 
times the same sum of (point-)unlabeled graphs (using reasoning similar to 
that presented above). This sum is also equal to zero (reasoning: single out 
any pair of points, one each from rt and r2; for every graph in the sum that 
has an m-bond joining these two points, there will be an otherwise identical 
graph that does not, and which exactly cancels the former's contribution to 
the sum). Consequently, the sum of all unlabeled graphs obtained by 
adding some or no m-bonds joining r t and r 2 is zero, and thus G-- the  
same sum but without the graph that has no added m-bonds (i.e., e 
itself)--equals - e. 

Loosely speaking, we may replace the sum of all diagrams having 
m-bonds joining field points in r~ and r z by a single diagram having one 
m-bond "joining" the (sub)regions r I and r2. 

I . e m m a  C. Let G be a set of distinct, star-irreducible graphs, 
/~t,/-'2 ..... f',,, each consisting of one or more (unlabeled) field circles, some 
or no white 1-circles, and some or no B-bonds. The multiple m-product 

has the value 

q~ = F ~  p' x F ~  p2 x . . .  x F,~ p" 

n 

( _ ) p _ ] ( p _ l ) !  =[i ~ I f '  
i= vPipi! 

where p = Z P~, and all other symbols are defined as above. 

Proo f  We begin by labeling the regions of the product diagram 

r = r , p ,  �9 r~,p-' , . . .  �9 r * ~ ~  

and summing all distinct, properly m-connected diagrams that can be 
obtained from it by adding one or more m-bonds. It should be clear that 
this sum equals ~b times I] ' /=] P~!. We now group all terms in the sum 
according to their m-adjacency, i.e., if two regions are m-adjacent in one 
diagram of the group, they are m-adjacent in every diagram of the group. 
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Lemma B then implies that the sum of all diagrams in a group may be 
replaced a single diagram: each region R; from the sum becomes a labeled, 
black ~-point, where y~ = I # v , ,  and with an m-bond joining points that 
represent m-adjacent regions (the value of )/i may depend on the coor- 
dinates of any root points in ~b, but this does not invalidate the proof). 
Thus the sum of all diagrams in the m-product maps exactly onto the sum 
obtained in taking the m-product of labeled field points. Lemma A then 
shows that this sum gives rise to a factor of ( - ) P - ~  ( p - l ) ! ,  and subse- 
quent division by I-I,."=~ P~! to recover ~b yields the stated result. 

2.4. The Logarithm Theorem 

Let G be a set of distinct, star-irreducible, connected graphs 
F~,/ '2 ..... F ,  each consisting of black circles, some or no white 1-circles, 
and some or no B-bonds. Then 

In[ 1 + (sum of all graphs in G)] = (sum of all m-products of graphs in G) 

P r o o f  A typical term in the expansion of the logarithm is 

P i i via 

where L is the value of the integral represented by Fi and vi is its symmetry 
number. Upon expansion of the p products, terms arise of the form 

( - ) P - '  ( p -  1)! 
i= l vPi'Pfi 

where ~ p ~ = p .  Lemma C has demonstrated that this is precisely the 
m-product of the corresponding graphs; thus the sum of all such 
m-products is equivalent to the expansion of the logarithm, and the 
theorem is proved. 

3. INVERSION OF THE URSELL FUNCTIONS 

The Ursell functions are a sequence of symmetric functions 
U~(I), U2(1,2), .,. that can be defined implicitly in terms of another of 
functions W~( 1 ), W2( 1, 2) .... through the relation ~6~ 

We(l, 2, ..., s) = ~  I" I Ua(i,  . . . . .  i,,,) 

where the sum over products is carried out over all partitions of the set 
{ 1 ..... s}. Uhlenbeck and Ford ~7) note that this relation may be inverted to 
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give the Us explicitly in terms of the W,; the result has exactly the same 
form as the original equation, except that a coefficient ( - )P- 1 (p _ 1 ) ! is 
associated with each term of the sum, where p is the number of terms of 
the corresponding product. This result with Lemma C allows us to write 
immediately 

U~(1,2 ..... s)=Y'.M W~(i, ..... i,,=) 

where M represents an m-product, and the sum is taken over all partitions 
as in the original formula. The m-product here is taken as if the points of 
the graphs represented by the W, functions were labeled field points, i.e., 
although the graph representing W~ has a white points which should not 
be joined to anything new upon taking the m-product, they are regardless 
joined to the white points of other W-graphs as if they were all labeled field 
points (in fact, the graph representing W~ is just a W~-face joining 0c root 
points, and it has no field points at all). 

The grand canonical partition can be expressed in terms of the graphs 
for W, 16~ 

3 = 1 + sum of all diagrams containing n ~> 1 black z-points 

joined by a W,,-face 

where z is the activity. Thus, according to the logarithm theorem presented 
above, In S is the sum of all m-products of the W-diagrams in S. Applica- 
tion of the inversion formula for the Ursell functions then leads to the well- 
known result ~6) 

In 3 = sum of all diagrams containing n >~ 1 black z-points 

joined by a U,,-face 

4. FRUSTRATED GRAPHS 

Perhaps the most fruitful application of the m-bond formalism will 
be to aid the reintroduction of e-bonds into cluster expansions that are 
written in terms 0ff-fonds, where f = e - 1 is the Mayer function, and e = 
e x p ( - u / k T )  with u the pair potential, k Boltzmann's constant, and T the 
temperature. Of course, f-bonds normally are preferred because they have 
a finite range, so  integrals given in terms of them are also finite. Thus the 
key to this manipulation is the selective replacement of ./=bonds. An 
example of the type of diagram we seek to generate is 

dN 
1 2 
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where a solid line represents an f -bond and the dashed line is an e-bond. 
The e-bond requires that the field points not overlap (considering, for 
example, the hard-sphere potential), while the f-bonds require that each 
field point .overlap both of the rooted points. Compared to diagrams that 
contain f-bonds exclusively, relatively few configurations of the field points 
therefo/'e contribute to the integral that the graph represents. We shall use 
the designation "frustrated graphs" to describe such graphs which contain 
"conflicting"f- and e-bonds; diagrams comprising h- and g-bonds will be 
considered similarly (where h is the pair correlation function and g = h + 1 
is the radial distribution function); in many cases we will use capitals to 
denote generic bonds F an:d E - -  F +  1. 

The notion of diagrams composed of both F- and E-bonds was present 
in the early development of cluster-diagram methods, ~8-~~ most notably in the 
work of Ree and Hoover, till who evaluated virial coefficients of hard spheres 
and hard disks by summing these frustrated graphs or, in their nomenclature, 
modified stars. Attard and Patey ~21 recently revived the idea to help in the 
computation of some sums of graphs, but otherwise the approach has received 
little attention. In this section we describe how some of the results presented 
above can help in the generation and manipulation of frustrated graphs. Our 
goal is more to motivate those results rather than to present a treatment for 
frustrated graphs, so this development will be incomplete. Despite the great 
similarity of our development to the work of Ree and Hoover, ~ we have not 
found a direct connection between the two (i.e., we have not been able to 
rederive their results using the formalism we present here). 

We will find it useful to generalize the notion of an m-product and 
define a similar operation in terms of bonds other than m-bonds. Thus, for 
example, we will speak of the F-product of two graphs F~ and ['2, which 
we define as the sum of all topologically distinct, "properly F-connected" 
graphs that can be formed from the product F~ �9 F2 by adding one or more 
F-bonds (distinguishing these F-bonds from any that already might be 
present in F~ or F2). The E-product, etc., follow similarly. Clearly, the 
diagrams created in taking these products will not sum to a simple result 
as the m-product does. Additionally, we introduce the tight m-product 
(tight F-product, etc.) of F~ and F2 as the single graph obtained from 
Fi * F,  when all field points in one region (i.e., those from F~) are joined 
by m-bonds to all field points in the other region (comprising the field 
points from F2). Multiple products follow in an obvious fashion. 

Let us now consider the following theorem: 

F2E T h e o r e m .  Let G be a set of distinct, star-irreducible, connected 
graphs Ft ,  F 2 ..... F,, each consisting of black circles, some or no labeled 
white l-circles, and some or no B-bonds. Then 
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the sum of all graphs in G and all F-products of graphs in G 

= In[ l + sum ofall graphs in G and all 

tight E-products of graphs in G] 

where F =  E -  1 and B is neither F nor E. 

Proof We take all the graphs described in the sum on the left-hand 
side of the equality, and we replace the F-bonds that were introduced to 
form the F-product by an E-bond plus an m-bond. The resulting sum is 
now over all distinct, properly (E, m)-connected graphs obtained by taking 
products of the graphs in G and joining the field points from the com- 
ponent graphs by an m-bond or an E-bond. These diagrams will not 
necessarily be properly m-connected or properly E-connected. However, 
some can be viewed as properly m-connected "islands" of properly 
E-connected regions; all graphs in the sum can be obtained from these 
graphs by joining the regions within each island by some or no m-bonds. 
If we focus now on one of these islands of E-connected regions, we consider 
the sum of all graphs obtained by joining field points from different regions 
of the island by some or no m-bonds. Unless the island is a tight E-product 
(and thus no m-bond can be added within it), this sum is zero (more 
precisely, the sum will be zero once we do this for all islands). The only 
graphs that remain to sum are G, tight E-products of G, and m-products 
of tight E-products of G. Application of the logarithm theorem yields the 
stated result. 

As a simple demonstration, let G = {. }, the diagram composed of a 
single black --point. The sum of G with all its f-products is 

I I + N +  El + 
and it is well known that this is the activity expansion for the In-~, where 
--- is the grand-canonical partition function. ~31 The sum of G with its tight 
e-products is 

�9 + ~ o  + + ~ 6  + . . .  

which is also well known to be 3 itself (minus unity), consistent with the 
F2E theorem. 

These manipulations take on more interest when applied to graphs 
that contain root points. In particular, the graphs that contain two root 
points describe the pair structure, and have been the subject of intense 
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study. Important classes of diagrams include "h-allowable diagrams"--all 
distinct connected simple graphs consisting of two white l-circles, labeled 
1 and 2, respectively, some or no p-circles, and at least one f-bond, such 
that the graphs are free of articulation circles--which sum to give h(r). The 
h-allowable diagrams are classified further according to whether they con- 
tribute to various pair functions: nodal diagrams, which sum to the series 
function b(r); nonnodal diagrams, which sum to the direct correlation func- 
tion c(r); bridge or elementary diagrams, which sum to the bridge function 
d(r). The elementary diagrams are very difficult to evaluate, and their treat- 
ment (or lack thereof) is the sole source of approximation in most integral 
equation theories for classical, pairwise-additive model systems. 

Turning to the present context, we wish to point out that all of the 
elementary graphs can be written as an f-product of nodal graphs and, 
conversely, every graph generated in taking the f-product of a set of nodal 
graphs is an elementary graph. It is tempting therefore to state 

d(r) equals the sum of all f-products of diagrams in b(r) 

which with the F2E theorem results in 

b(r) + d(r) = ln[ 1 + b(r) + the tight e-product of diagrams in b(r)] 

o r  

b(r)+d(r)=lnIl+b(r)+t~ + ~  + ~ + ~ +"" ] 

The Percus-Yevick approximation would then result by setting the 
e-products to zero. Unfortunately this statement is incorrect, for two 
reasons. First, the decomposition of a graph in d(r) is not necessarily 
unique. For example, the diagram 

is generated from the f-product of 
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and also from the f-product of 

 g,,o x 

Thus the f-product of graphs in b(r) contains duplicates of graphs in d(r). 
Second, the F2E theorem applies only if the f-bonds introduced by taking 
the f-product are distinguished--for the purpose of defining the symmetry 
number--from any f-bonds already present in the original graphs. Thus for 
example, the diagram 

which arises in taking the f-product of 

t~T]o and (~N~ O 

has a symmetry number of 2 when considered as one of the diagrams in d, 
but is given a symmetry number of only 1 when the new f-bond is 
distinguished from those in the original diagrams (as required by the 
theorem). We can see no simple and elegant way to bypass these problems. 

Alternative decompositions of the graphs in d(r) are possible. A vari- 
able approach involves the h-bond expansion of d(r): all diagrams with two 
root points, one or more black p-points, and h-bonds, with no nodal points 
and no articulation pairs. Many of the graphs in this formulation of d(r) 
are generated by taking all possible h-products of the three graphs 

(here and in all of what follows we will use a solid line to represent an 
h-bond, and a dashed line to represent a g-bond). There remain however, 
several complications. First, not all graphs in d(r) can be generated this 
way. These we will simply ignore, as an approximation; since the first such 
diagram, e.g., 

1 ~ 2  
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has four field points, their neglect affects the sixth and higher virial coef- 
ficients. 

Second, the h-product generates unconnected graphs when only 
O �9 or only O are in the product graph. These may be subtracted 

1 2 
out easily. 

Third, the h-product generates graphs having articulation pairs, and 
thus which are not in d(r). The problem arises when O 
or 1 

ida2 
without an added h-bond joining the field point from ~ to another 
region i 

or a O - " -  region. The problem is compounded in diagrams with many 
2 

such ~ bonds, and of course by the fact that the same occurs with the 
I 

O graphs. We can define a new function fir) to eliminate this dif- 
2 

ficulty; it is defined implicitly: 

j ( r ) = h ( r )  minus{ the sum of all graphs containing two white 
l-circles labeled 1 and 2, respectively, and some or no black 
p-circles, such that there is a) '-bond joining the white circles 
to each other, a j-bond from every black circle to the root 
point labeled 1, h-bonds joining any of the field points to 
each other, one or more h-bonds joining field points to the 
root point labeled 2, and no articulation circles} 

The quantity in braces equals the sum of all diagrams obtained by taking 
the h-product of all products of O - - -  and coloring one of the black 

l 
points white and labeling it "2." The first few graphs in the h-bond 
expansion of j ( r )  are 

~ = 0 0 - , . ,  . . ,  + + 
j h 

multiplies itself 

which displays the necessary symmetry of the root points. We have not 
investigated further the nature of this function. 
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Now, we let G be the set of diagrams 

where the wavy bonds are j-bonds and, within the approximation discussed 
in the first point above, we have 

b(r) + d( r )=  the sum of the diagrams in G and all h-products of 
graphs in G, minus all h-products of OdW~, minus all 

I 
h-products of O#W~, minus the convolution h*b 

2 
The last term is needed to account for the extra nodal graphs introduced 
with the convolution of h with itself. The h-products of IO/Wr ' a n d 2 ~ ,  

due to the defmition of j ( r ) ,  are simply O and _O- , respectively, 
I 2 

and may be evaluated via the compressibility equation. Finally, application 
of the F2E theorem results in 

b(r)+d(r)=ln[1 +the  sum of the graphs in G and all tight 
g-products of graphs in G ] -  O - - -  - O -h*b  

i 2 

The utility of this formulation is questionable, as it depends greatly on the 
nature ofj(r) :  the feasibility of its evaluation, and the extent of its range 
(which impacts on the magnitude of the tight g-products of G). One should 
also not forget the graphs neglected early in the formulation. We present 
this development to spur further thought; no doubt other approaches to 
the transformation of the bridge diagrams can be developed. 
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